Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine.
نویسندگان
چکیده
In an animal model of drug idiosyncrasy, rats cotreated with nonhepatotoxic doses of lipopolysaccharide (LPS) and ranitidine (RAN) develop hepatocellular injury, whereas rats treated with LPS and famotidine (FAM) do not. The coagulation system and neutrophils (PMNs) are requisite mediators of LPS/RAN-induced liver injury. We tested the hypothesis that unique gene expression in LPS/RAN-treated rats requires coagulation system activation and that these changes are absent in rats given LPS and FAM. Rats were treated with a nonhepatotoxic dose of LPS (44.4 x 10(6) endotoxin units/kg i.v.) or its vehicle, and then 1 h later, they were treated with heparin (3000 U/kg) or its vehicle. One hour thereafter, they were given RAN (30 mg/kg), FAM (6 mg/kg, a pharmacologically equiefficacious dose, or 28.8 mg/kg, an equimolar dose), or vehicle (i.v.). They were killed 2 or 6 h after drug treatment for evaluation of hepatotoxicity, coagulation system activation, and liver gene expression (2 h only). Statistical filtering of gene array results and real-time polymerase chain reaction identified groups of genes expressed in LPS/RAN-treated rats but not LPS/FAM-treated rats that were either changed or unchanged by heparin administration. For example, LPS/RAN-induced mRNA expression of the inflammatory mediators interleukin-6, cyclooxygenase-2, and macrophage inflammatory protein-2 (MIP-2) was reduced by anticoagulation. Enhancement of serum MIP-2 and plasminogen activator inhibitor-1 concentrations in LPS/RAN-treated rats was prevented by anticoagulation. The results suggest cross-talk between hemostasis-induced gene expression and inflammation (e.g., PMN function) in the genesis of hepatocellular injury in LPS/RAN-treated rats. In contrast, neither the expression of such genes nor hepatocellular necrosis occurred in rats treated with LPS/FAM.
منابع مشابه
Unique gene expression and hepatocellular injury in the lipopolysaccharide-ranitidine drug idiosyncrasy rat model: comparison with famotidine.
Rats cotreated with lipopolysaccharide (LPS) and ranitidine (RAN) but not LPS and famotidine (FAM) develop hepatocellular injury in an animal model of idiosyncratic drug reactions. Evaluation of liver gene expression in rats given LPS and/or RAN led to confirmation that the hemostatic system, hypoxia, and neutrophils (PMNs) are critical mediators in LPS/RAN-induced liver injury. We tested the h...
متن کاملRanitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation.
We previously reported that ranitidine, an H(2) receptor antagonist, inhibited neutrophil activation in vitro and in vivo, contributing to reduce stress-induced gastric mucosal injury in rats. In this study, we examined whether ranitidine would reduce ischemia/reperfusion-induced liver injury, in which activated neutrophils are critically involved, in rats. We also examined the effect of famoti...
متن کاملThe role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury.
Exposure to a nontoxic dose of bacterial lipopolysaccharide (LPS) increases the hepatotoxicity of the histamine-2 (H2) receptor antagonist, ranitidine (RAN). Because some of the pathophysiologic effects associated with LPS are mediated through the expression and release of inflammatory mediators such as tumor necrosis factor alpha (TNF), this study was designed to gain insights into the role of...
متن کاملCoagulation-mediated hypoxia and neutrophil-dependent hepatic injury in rats given lipopolysaccharide and ranitidine.
Idiosyncrasy-like liver injury occurs in rats cotreated with nonhepatotoxic doses of ranitidine (RAN) and bacterial lipopolysaccharide (LPS). Hepatocellular oncotic necrosis is accompanied by neutrophil (PMN) accumulation and fibrin deposition in LPS/RAN-treated rats, but the contribution of PMNs to injury has not been shown. We tested the hypothesis that PMNs are critical mediators of LPS/RAN-...
متن کاملGene expression analysis points to hemostasis in livers of rats cotreated with lipopolysaccharide and ranitidine.
Studies in rats have demonstrated that modest underlying inflammation can precipitate idiosyncratic-like liver injury from the histamine 2-receptor antagonist, ranitidine (RAN). Coadministration to rats of nonhepatotoxic doses of RAN and the inflammagen, bacterial lipopolysaccharide (LPS), results in hepatocellular injury. We tested the hypothesis that hepatic gene expression changes could be d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 317 2 شماره
صفحات -
تاریخ انتشار 2006